Interchange of vector valued integrals when the measures are Bochner or Pettis indefinite integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SET - VALUED CHOQUET - PETTIS INTEGRALS Chun - Kee

In this paper, we introduce the Choquet-Pettis integral of set-valued mappings and investigate some properties and convergence theorems for the set-valued Choquet-Pettis integrals.

متن کامل

Vector-valued integrals

Quasi-complete, locally convex topological vector spaces V have the useful property that continuous compactly-supported V -valued functions have integrals with respect to finite Borel measures. Rather than constructing integrals as limits following [Bochner 1935], [Birkhoff 1935], et alia, we use the [Gelfand 1936][Pettis 1938] characterization of integrals, which has good functorial properties...

متن کامل

Preview of vector-valued integrals

In contrast to construction of integrals as limits of Riemann sums, the Gelfand-Pettis characterization is a property no reasonable notion of integral would lack. Since this property is an irreducible minimum, this definition of integral is called a weak integral. Uniqueness of the integral is immediate when the dual V ∗ separates points, meaning that for v 6 v′ in V there is λ ∈ V ∗ with λv 6=...

متن کامل

On indefinite BV-integrals

In 1986 Bruckner, Fleissner and Foran [2] obtained a descriptive definition of a minimal extension of the Lebesgue integral which integrates the derivative of any differentiable function. Recently, Bongiorno, Di Piazza and Preiss [1] showed that this minimal integral can be obtained from McShane’s definition of the Lebesgue integral [4] by imposing a mild regularity condition on McShane’s parti...

متن کامل

Gelfand-Pettis integrals and weak holomorphy

If X is a vector space and E is a subset of X, the convex hull of E is defined to be the intersection of all convex sets containing E, and is denoted by co(E). One checks that the convex hull of E is equal to the set of all finite convex combinations of elements of E. If X is a topological vector space, the closed convex hull of E is the intersection of all closed convex sets containing E, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1979

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700010856